

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

FIBER-OPTIC COMMUNICATIONS

JOAN M. GENÉ BERNAUS

OPTICAL COMMUNICATIONS GROUP

gco.upc.edu

CONTENTS

1.INTRODUCTION 2.OPTICAL FIBERS **3.OPTICAL SOURCES 4.** EXTERNAL MODULATORS **5.**OPTICAL RECEIVERS **6.**OPTICAL AMPLIFIERS **7.** FIBER-OPTIC NETWORKS

2. OPTICAL FIBERS

RAY OPTICS

- LIGHT PROPERTIES
- POSTULATES OF RAY OPTICS
- REFLECTION & REFRACTION
- WORKING PRINCIPLE
 - **D** TOTAL INTERNAL REFLECTION
 - ACCEPTANCE ANGLE
 - NUMERICAL APERTURE
 - LIGHT COUPLING

- **TYPES OF OPTICAL FIBERS**
 - DEFINITION & CLASSIFICATION
 - STANDARDIZATION
- PROPAGATION TRANSVERSAL MODES
 - FIBER MODES
 - SINGLE-MODE OPERATION
- PULSE PROPAGATION
 - **ATTENUATION**
 - **DISPERSION**
 - MULTI-MODE FIBERS: MODAL DISPERSION
 - SINGLE-MODE FIBERS: CHROMATIC DISPESION AND PMD
 - NONLINEAR EFFECTS
 - SPM, XPM & FWM

RAY OPTICS

"Light is an electromagnetic wave phenomenon described by the same theoretical principles that govern all forms of EM radiation. Nevertheless, it is possible to describe many phenomena using some approximations"

FIBER-OPTIC COMMUNICATIONS

Double-Slit Experiment

Basic Light Concepts

Thomas Young (1801)

Basic Light Concepts

Frequency

Evolution of field amplitude over time at a fixed distance

Wavelength

Evolution of field amplitude over distance at a fixed time

asic Light Concepts

telecom BCN UPC UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

1. Light travels in the form of **rays**

2. An optical medium is characterized by its **refractive index** ($n\geq 1$), which is defined as the ratio of the speed of light in free space ($c=3\cdot 10^8$ m/s) to that in the medium (v)

$$n \equiv \frac{c}{v} \ge 1 \rightarrow t = \frac{d}{v} = \frac{nd}{c}$$

 $nd \equiv optical path length$

Ray Optics Postulates 0

3. In an inhomogeneous medium the refractive index n(r) is a function of the position r = (x,y,z). The optical path length along a given trajectory between points A and B is therefore:

4. Light rays travel along the path of least time (**Fermat's Principle**)

lecom BCN UNIVERSITAT POLITÈCNICA DE CATALUNYA DADOTI ONIVERSIT

telecom BCN UPC UPC UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

Reflection efraction ight R Ø

At the boundary between two media, both reflected and refracted rays

Reflection ctio efra ight Ŷ

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

telecom

External Reflection $(n_1 < n_2)$

Reflection efraction ight R S

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

telecom

Internal Reflection (n₁>n₂)

Light Reflection & Refraction efraction

Total Internal Reflection

WORKING PRINCIPLE

Definintion

"An Optical Fiber is a dielectric cylindrical waveguide capable of guiding light at certain frequencies with low attenuation and high bandwidth"

IORK

FIBER-OPTIC COMMUNICATIONS

B.E.A. Saleh and M.C. Teich, "Fundamentals of photonics". 3rd ed. Wiley, 2019.

2. OPTICAL FIBER - PRINCIPLE OF OPERATION

in O **Fotal Internal** Reflection

Numerical Aperture quantifies the ability for the optical fiber to accept incoming light from an external source.

telecom BCN UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

in O Interna Reflection **[otal**

Coupling o an OF an ht 50

40

 $\cos^{n}\theta$

 $\cos \theta$

40

50

50

30

20

10

0

10

20

30

Light Coupling Into an OF

$$P_T = 2\pi \int_0^{\pi/2} P(\theta) \sin \theta \cdot \partial \theta$$

Injected Optical Power

$$P_{IN} = (1-R) 2\pi \int_{0}^{\theta_{lim}} P(\theta) \sin \theta \cdot \partial \theta$$

Reflection
Loss $R \approx \left(\frac{n_0 - n_1}{n_0 + n_1}\right)^2$

Paraxial Optics

 $\theta_a \rightarrow \text{Acceptance Angle}$ $\theta_d \rightarrow \text{Vision Angle}$ $tg \, \theta_d = \frac{a}{d}$

2. OPTICAL FIBER – PRINCIPLE OF OPERATION

FIBER-OPTIC COMMUNICATIONS

telecom BCN UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

Light Coupling Into an OF

TYPES OF FIBERS

Fibers

RIN)

J

raded-Index

Ray Delay Equalization

All rays have the same delay no matter the incidence angle (same optical path). The propagation is synchronized.

Reference Standards

Multimode Fibers

IEC 60793	
NA = 0,275 (+/- 0,015)	
Step index	
1.90 %	
62,5 μm (+/- 3 μm)	
125 μm (+/- 1 μm)	
245 μm (+/- 10 μm)	
850 & 1300 nm	
3 - 3,2 dB/km	
0,7 - 0,8 dB/km	
200 - 300 MHz/Km	
400 - 600 MHz/Km	

MULTIMODE FIBER 50/125	ITU-T G.651	
Numerical Aperture	NA= 0,18 a 0,24 (+/- 10%)	
Index Profile	Graded index	
Average Refractive Index	1,43	
Core Diameter	50 μm (+/- 3 μm)	
Cladding Diameter	125 μm (+/- 3 μm)	
Silicon Coating	245 μm (+/- 10 μm)	
Concentricity Error	6%	
Core Circularity Error	6%	
Cladding Circularity Error	2%	
Attenuation @ 850 nm	2,7 - 3 dB/km	
Attenuation @ 1300 nm	0,7 - 0,8 dB/km	
Bandwidth @ 850 nm	300 - 500 MHz/Km	
Bandwidth @ 1300 nm	500 - 1000 MHz/Km	

Singlemode Fibers

SINGLE MODE FIBER "STAN <i>DARD</i> "	ITU-T G.652	SINGLE MODE FIBER "DISPERSION SHIFTED"	ITU-T G.653
Cutting Wavelength	1,18 - 1,27 μm	Cutoff Wavelength	1,05 - 1,15 μm
Modal Field diameter	9,3 (8 - 10) µm (+/- 10%)	Modal Field diameter	8 (7 - 8,3) μm (+/- 10%)
Cladding Diameter	125 μm (+/- 3 μm)	Cladding Diameter	125 μm (+/- 3 μm)
Silicon Coating	245 μm (+/- 10 μm)	Silicon Coating	245 μm (+/- 10 μm)
Cladding Circularity Error	2%	Cladding Circularity Error	2%
Modal Field Concentricity Error	1µm	Modal Field Concentricity Error	1µm
Attenuation @ 1300 nm	0,4 - 1 dB/km	Attenuation @ 1300 nm	< 1 dB/Km
Attenuation @ 1550 nm	0,25 - 0,5 dB/km	Attenuation @ 1550 nm	0,25 - 0,5 dB/Km
Chromatic Disp. @ 1285-1330 nm	3,5 ps/km/nm	Chromatic Disp. @ 1525-1575 nm	3,5 ps/Km/nm
Chromatic Disp. @ 1270-1340 nm	6 ps/Km/nm		
Chromatic Disp. @ 1550 nm	20 ps/Km/nm		
SINGLE MODE FIBER "MINIMUM ATTENUATION"	ITU-T G.654	SINGLE MODE FIBER "NON-ZERO DISPERSION SHIFTED"	ITU-T G.655
Modal Field diameter	125 μm (+/- 3 μm)	Modal Field diameter	8,4 μm (+/- 0,6 μm)
Cladding Circularity Error	2%	Cladding Diameter	125 μm (+/- 1 μm)
Modal Field Concentricity Error	1µm	Cutoff Wavelength	1260 nm
Silicon Coating	245 μm (+/- 10 μm)	Attenuation @ 1550 nm	0,22 - 0,30 dB/Km
Attenuation @ 1550 nm	0,15 - 0,25 dB/Km	Chromatic Disp. @ 1550 nm	4,6 ps/Km/nm
Chromatic Disp. @ 1550 nm	20 ps/Km/nm	Non-Zero Dispersion Region	1540 - 1560 nm

Reference Standards UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

telecom BCN

5

FIBER MODES

- A Transversal Propagation Mode of a monochromatic electromagnetic wave travelling along a waveguide is a particular field distribution measured in a plane perpendicular to the propagation axis.
- □ Each mode belongs to a particular solution of Maxwell's equations inside the waveguide structure given the imposed boundary conditions.

SITAT POLITÈCNIC

□ TE (transverse electric) – The electric field is zero in the propagation direction.

□ TM (transverse magnetic) – The magnetic field is zero in the propagation direction.

□ TEM (transverse electromagnetic) – Both the electric and the magnetic fields are zero in the propagation direction.

□ HE-EH (hybrid) – Both the electric and the magnetic fields are non-zero in the propagation direction.

Laser radiation \rightarrow TEM

OF propagation \rightarrow HE-EH

FIBER-OPTIC COMMUNICATIONS

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

telecom BCN UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

Optical Fiber Modes

Optical Fiber Modes

Characteristic Equation for Weakly-Guiding Step-Index Fibers

telecom BCN UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

Optical Fiber Modes

Linearly-Polarized (LP) Modes

LP_{ij} 2i revolution maxima j radial maxima

Fiber Modes

Single-mode Condition

Cutoff Wavelength

$$\lambda > \lambda_{c} = 2\pi \frac{a}{V_{c}} NA$$

telecom BCN UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

Single-mode Condition

Core/Cladding relative power of LP modes

Fundamental Mode (HE₁₁ – LP₀₁)

 E_0 **Gaussian Profile** $E(r) = E_0 \exp\left|-\left(\frac{\rho}{W_0}\right)^2\right|$ E_0/e $W_0 = \left(\frac{2\int_0^\infty r^2 E^2(r) \cdot r \,\partial r}{\int_0^\infty E^2(r) \cdot r \,\partial r} \right)^{\gamma}$ $2W_0$ mode field diameter (MFD)

PULSE PROPAGATION

telecom BCN UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

$$\beta(\omega) = \sum_{m=0}^{\infty} \frac{\beta_m}{m!} (\omega - \omega_0)^m \quad \longleftarrow \quad \beta_m \equiv \frac{\partial^m \beta}{\partial \omega^m} \bigg|_{\omega = \omega_0}$$

Govind P. Agrawal, "Nonlinear Fiber Optics", 4th Edition, 2007. Chapter 2.

$$\frac{\partial A(z,t)}{\partial z} = -\frac{\alpha}{2}A(z,t) + \beta_1 \frac{\partial A(z,t)}{\partial t} + j \frac{\beta_2}{2} \frac{\partial^2 A(z,t)}{\partial t^2} - \frac{\beta_3}{6} \frac{\partial^3 A(z,t)}{\partial t^3} - j\gamma |A(z,t)|^2 A(z,t)$$
group
dispersion
Kerr
delay
chromatic
slope
nonlinear
effects

 $A(z,t) \quad \text{Optical field pulse propagating in the fiber's transverse mode}$ Propagation Constant $\beta(\omega) = \beta_0 + \beta_1 \left(\omega - \omega_0\right) + \frac{1}{2} \beta_2 \left(\omega - \omega_0\right)^2 + \frac{1}{6} \beta_3 \left(\omega - \omega_0\right)^3 + \cdots \qquad \beta_m = \frac{\partial^m \beta}{\partial \omega^m} \bigg|_{\omega}$

Govind P. Agrawal, "Nonlinear Fiber Optics", 4th Edition, 2007. Chapter 2.

2. OPTICAL FIBER – PULSE PROPAGATION: ATTENUATION

telecom BCN

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

Definition

"Light when propagating down the fiber, it experiences an exponential decay of the optical power over the distance as a consequence of absorption and scattering phenomena"

Attenuation Coefficient

UNIVERSITAT POLITÈCNICA

tion Attenuation (dB/km) 10 nuation Propaga 1 U 0.1 Pulse At

Material Absorption

"Any material absorbs energy at specific wavelengths corresponding to the electronic and vibrational resonances of the medium"

Due to the basic material (SiO₂)

Electronic resonances (**UV**) Vibrational resonances (**IR**)

Extrinsic Absorption

Due to impurities in the material

MetalsFe, Cu, Co, Ni, Mn, Cr ...Water OH^+ Dopants GeO_2 , F, P_2O_5 , B_2O_3 ...

UNIVERSITAT POLITÈCNICA

Rayleigh Scattering

"The random localized variations of the molecular positions in the glass itself create random inhomogeneities in the refractive index that act as tiny scattering centers. The scattered intensity is proportional to λ^{-4} , so that short wavelengths are scattered more than long wavelengths. Blue light is therefore scattered more than red (this is the reason why the sky appears blue)."

 $\alpha_{\rm R} = C/\lambda^4$ C \rightarrow 0.7-0.9 (dB/km) μ m⁴

Waveguide imperfections (Mie Scattering)

"Loss mechanism arising from cilindrical structure imperfections, comparable to the wavelength, of the waveguide"

- □ Irregularities of the core-cladding structure
- **Fluctuations of the relative refractive index**
- **Fluctuations of the core diameter**
- **Density fluctuations** \rightarrow Stress
- Air bubbles

UNIVERSITAT POLITÈCNICA

tion 0 ropaga uati Pulse

The attenuation coefficient depends on the absorption and scattering coefficient of both core and cladding. Given that the cladding penetration depends on the mode so does the attenuation (the bigger the mode order, the bigger the attenuation).

Bending Losses

"When part of the evanescent field is forced to travel at a speed higher than the speed of light due to fiber bending, this energy is radiated outside the propagation mode"

Propagation nuation J Pulse

D

tion uation Propaga U Pulse

Distance Limitation due to Attenuation

Bit Energy
$$E_{b}(L) = P_{b}(L)T_{b} = \frac{P_{b}(L)}{R_{b}}$$

$$E_{b}(L) \ge E_{min} \rightarrow \frac{P_{b}(L)}{R_{b}} \ge E_{min} \rightarrow \frac{P_{b}(0)}{R_{b}} 10^{\frac{\alpha L}{10}} \ge E_{min} \rightarrow 10^{\frac{\alpha L}{10}} \ge \frac{E_{min}R_{b}}{P_{b}(0)}$$

$$P_{b}(L) = P_{b}(0)10^{\frac{\alpha L}{10}}$$

$$\rightarrow -\frac{\alpha L}{10} \ge \log\left(\frac{E_{min}R_{b}}{P_{b}(0)}\right) \rightarrow L \le \frac{10}{\alpha}\log\left(\frac{P_{b}(0)}{E_{min}R_{b}}\right)$$
Example
$$P_{b}(0) = 10 \text{ mW}$$

$$R_{b} = 10 \text{ Gb/s}$$

$$\alpha = 0.2 \text{ dB/Km}$$

$$E_{c} = 10^{-17} \text{ l}$$

Ition ropaga 0 S U S lse Pul

Definition

"When an optical pulse propagates through an optical fiber, its energy tends to spread <u>in time</u> producing an increase on the pulse width"

Change with distance

Intermodal (Modal) Dispersion

Each waveguide mode propagates at different speed and so a delay among them is induced. Only in Multi-Mode fibers.

Intramodal Dispersion

Group Velocity Dispersion (GVD) or Chromatic Dispersion (CD)

The signal's spectral components propagate at different speeds and so a delay is generated. Negligible in front of Modal Dispersion.

Material Dispersion

The refractive index of any given material is frequency dependent inducing different propagation speeds for each spectral component.

Waveguide Dispersion

The core-cladding field distribution is frequency dependent and so is the effective refractive index.

Polarization Mode Dispersion (PMD)

The index profile is not uniform along the transversal angle making the propagation speed to be polarization dependent. Negligible in front of Chromatic Dispersion.

Propagation elay Group Pulse

Change with distance

$$\frac{\partial A}{\partial z} = -\frac{\alpha}{2}A + \beta_{1}\frac{\partial A}{\partial t} + j\frac{\beta_{2}}{2}\frac{\partial^{2}A}{\partial t^{2}} - \frac{\beta_{3}}{6}\frac{\partial^{3}A}{\partial t^{3}} - j\gamma |A|^{2}A$$
Delay
$$\frac{\partial A}{\partial z} = \beta_{1}\frac{\partial A}{\partial t} \xrightarrow{FT} \frac{\partial A}{\partial z} = -j\omega\beta_{1}A$$

$$\mathcal{A}(z,\omega) = \mathcal{A}(0,\omega)e^{-j\omega\beta_{1}z} \xrightarrow{IFT} A(z,t) = A(0,t-\beta_{1}z)$$
Delay
Delay

Propagation lay Ð dno. Ū Pulse

tion elay Propagat Group Pulse

Group delay (τ_g) and phase delay (τ_{ϕ})

$$u(0,t) = a(t)e^{j\omega_{c}t}$$

$$U(0,\omega) = A(0,\omega - \omega_{c})$$
Slowly varying envelope

$$H(z,\omega) = e^{-j\beta(\omega)z} \approx e^{-j\omega_{c}\tau_{\phi}z}e^{-j(\omega-\omega_{c})\tau_{g}z}$$

$$\beta(\omega) \approx \underbrace{\beta(\omega_{c})}_{\omega_{c}\tau_{\phi}} + (\omega - \omega_{c})\underbrace{\frac{\partial\beta}{\partial\omega}}_{\tau_{g}} = 0$$

$$U(z,\omega) = U(0,\omega)H(z,\omega) = \underbrace{A(0,\omega - \omega_{c})e^{-j(\omega-\omega_{c})\tau_{g}z}}_{A(0,\omega)e^{-j\omega\tau_{g}z}*\partial(\omega-\omega_{c})}e^{-j\omega_{c}\tau_{\phi}z}$$

DISPERSION IN MULTI-MODE FIBERS

Intermodal (Modal) Dispersion

Modal dispersion takes place in multimode fibers as a result of group velocity differences among the propagated modes. The modes are typically not equally excited giving a particular profile.

Synchronized Modes

noi ispersion Propaga Modal D Pulse

Allan W. Snyder & John D. Love, "Optical Waveguide Theory", Kluwer Academic Publishers, 1983, pg. 55.

2. OPTICAL FIBER – PULSE PROPAGATION: DISPERSION

WKV (Wentzel-Kramers-Brillouin) Approximation

$$t_{m} \equiv \frac{\partial \beta_{m}}{\partial \omega} \approx \frac{n_{1}}{c} \left(1 + \frac{\alpha - 2}{\alpha + 2} \left(\frac{m}{M} \right)^{\frac{\alpha}{\alpha + 2}} \Delta \right) \xrightarrow{\alpha = \infty} \frac{n_{1}}{c} \left(1 + \frac{m}{M} \Delta \right) \xrightarrow{m: \text{ mode number}} M: \text{ total modes}$$

$$\xrightarrow{\alpha = 2} \frac{n_{1}}{c} \xrightarrow{better approx.} \frac{n_{1}}{c} \left(1 + \frac{m}{M} \frac{\Delta^{2}}{2} \right)$$

Variation of propagation time with modegroup number for different α -profile fibers.

Under-

Over-

compensated

compensated

 t_q

 $\alpha = \infty$

Bahaa E.A. Saleh & Malvin C. Teich, "Fundamentals of Photonics", Wiley Interscience, 2nd Ed. 2007, pg. 346. John Gowar, "Optical Communication Systems", Prentice-Hall 1983, pg. 169.

 $(\Delta T)_{\min}$

Mode

number

<u>uo</u> ispersion Propaga σ Pulse Mod

Statistical Delay Model

RMS Law

Maximum Distance due to Modal Dispersion

UO rsio Propaga be . S σ Pulse po Ś

telecom BCN UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

rsion tion U Sp 60 ba 2 U mati 0 Pulse

Group Velocity Dispersion (GVD) – Chromatic Dispersion (CD)

The origin of this kind of dispersion comes from the frequency dependence of fiber's refractive index and so the group velocity.

rsion CO t. spe Propaga • U <u>t</u>: Ba Pulse Chro

$$\begin{array}{ll} \mbox{Group Delay} & [s/m] \\ \tau_g &\equiv \frac{\partial \beta}{\partial \omega} = \frac{n}{c} + \frac{\omega}{c} \frac{\partial n}{\partial \omega} &= \frac{\partial \beta}{\partial \lambda} \frac{\partial \lambda}{\partial \omega} = \frac{n}{c} - \frac{\lambda}{c} \frac{\partial n}{\partial \lambda} & \lambda = \frac{c}{f} = \frac{2\pi c}{\omega} \\ \beta &\equiv n \frac{\omega}{c} = n \frac{2\pi}{\lambda} \rightarrow \frac{\partial \beta}{\partial \lambda} = -\frac{2\pi n}{\lambda^2} + \frac{2\pi}{\lambda} \frac{\partial n}{\partial \lambda} & \frac{\partial \lambda}{\partial \omega} = -\frac{2\pi c}{\omega^2} = -\frac{\lambda^2}{2\pi c} \\ \beta &: \mbox{ propagation constant} \\ \mbox{Group Velocity} & [m/s] & \mbox{Group Index} \\ \mathbf{v}_g &\equiv \frac{1}{\tau_g} = \left(\frac{\partial \beta}{\partial \omega}\right)^{-1} = \frac{c}{n + \omega \frac{\partial n}{\partial \omega}} = \frac{c}{n - \lambda \frac{\partial n}{\partial \lambda}} = \frac{c}{n_g} & n_g \equiv n + \omega \frac{\partial n}{\partial \omega} = n - \lambda \frac{\partial n}{\partial \lambda} \\ \mbox{Phase Velocity} & [m/s] & \ \mathbf{v}_{\phi} \equiv \frac{\omega}{\beta} = \frac{c}{n} - \frac{\frac{\partial n}{\partial \lambda} = 0}{n - \lambda \frac{\partial n}{\partial \lambda}} = \mathbf{v}_g \end{array}$$

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

telecom

ispersion Propagation U Chromati Pulse

MATERIAL DISPERSION

WAVEGUIDE DISPERSION

The group velocity for each mode is frequency dependent, even in the absence of material dispersion, because the core-cladding distribution varies with the frequency

UNIVERSITAT POLITÈCNICA

DE CATALUNYA BARCELONATECH

telecom

spersion tion ga ropa U Chromati Pulse

COMBINED MATERIAL & WAVEGUIDE DISPERSION

 $\mathbf{D}_{\mathrm{W}} \approx -\frac{\mathbf{n}_{\mathrm{1g}} - \mathbf{n}_{\mathrm{2g}}}{\mathbf{c}\lambda} \frac{\mathbf{1.984}}{\mathbf{V}^2}$

n_{2g}: cladding group index b: normal

 $\mathbf{D}_{\mathrm{M}} = -\frac{2\pi}{\lambda^2} \frac{\partial \mathbf{n}_{\mathrm{2g}}}{\partial \omega} = \frac{1}{c} \frac{\partial \mathbf{n}_{\mathrm{2g}}}{\partial \lambda}$

b: normalized propagation constant

∆: relative refractive indexV: normalized frequency

telecom BCN UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

ispersion Propagation U Chromati Pulse

Dispersion Slope

Change with distance

$$\frac{\partial A}{\partial z} = -\frac{\alpha}{2}A + \beta_1 \frac{\partial A}{\partial t} + j \frac{\beta_2}{2} \frac{\partial^2 A}{\partial t^2} - \frac{\beta_3}{6} \frac{\partial^3 A}{\partial t^3} - j\gamma |A|^2 A$$

Slope

$$\frac{\partial A}{\partial z} = -\frac{\beta_3}{6} \frac{\partial^3 A}{\partial t^3} \xrightarrow{FT} \frac{\partial \mathcal{A}}{\partial z} = j\omega^3 \frac{\beta_3}{6} \mathcal{A}$$
$$\mathcal{A}(z,\omega) = \mathcal{A}(0,\omega) e^{j\omega^3 \frac{\beta_3}{6} z}$$

"Allpass with cubic phase"

Dispersion Slope Length

UPC

telecom BCN UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

$$L_D' = \frac{T_0^3}{|\beta_3|}$$

 T_0 : Transmitted Gaussian Pulse With

Dispersion Characteristics of Different Commercial Fibers

telecom BCN UNIVERSITAT POLITÈCNICA DE CATALUNYA

BARCELONATECH

telecom BCN UPC UPC UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

5

spersion Propagation Q U t. Chroma Pulse

telecom BCN UPC UPC UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

Maximum Distance due to Chromatic Dispersion

rsio tion U 5 Π Π ulse

rsio tion J **B** 0 S Π 0 20 0 Pulse hro

Attenuation / Dispersion influence on the tx. distance

Polarization Mode Dispersion (PMD)

The origin of this kind of dispersion comes from the polarization dependence of the refractive index. As a consequence, the light experiences different group delays regarding its polarization.

telecom BCN UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

Propagation PMD Pulse

Distance Limitation due to PMD differential group delay T_0 τ_g T_{L} D_{PMD}=1 ps/km^{1/2} **ISI CRITERION** L_{max} = 10000 Km 10 G $\Delta T \leq T_{\rm b}$ $L \leq \frac{1}{D_{PMD}^2 R_b^2}$ L_{max} = 100 Km 100 G $\Delta T = D_{PMD} \sqrt{L}$

12 MARCH 2021

Kerr Nonlinearity

Change with distance

Nonlinearity

$$\frac{\partial A}{\partial z} = -\frac{\alpha}{2}A + \beta_1 \frac{\partial A}{\partial t} + j \frac{\beta_2}{2} \frac{\partial^2 A}{\partial t^2} - \frac{\beta_3}{6} \frac{\partial^3 A}{\partial t^3} - j\gamma |A|^2 A$$

Optical Power does not change with distance

$$\frac{\partial A}{\partial z} = -j\gamma \left| A \right|^2 A$$
$$A(z,t) = A(0,t) e^{-j\gamma |A|^2 z}$$

Nonlinear phase

Nonlinear Length

P : Peak Power

FIBER-OPTIC COMMUNICATIONS

cts ropa Π U 2. Se Ζ

2. OPTICAL FIBER - PULSE PROPAGATION: NONLINEAR EFFECTS

Propagation Effects 5 Π online Pulse Z

$$\begin{split} \frac{\partial A}{\partial z} &= -\frac{\alpha}{2} A + j \frac{\beta_2}{2} \frac{\partial^2 A}{\partial t^2} - j\gamma \left| A \right|^2 A \qquad A(z,t) = A_1(z,t) e^{j\Omega_1 t} + A_2(z,t) e^{j\Omega_2 t} \\ \frac{\partial A}{\partial z} &= \frac{\partial A_1}{\partial z} e^{j\Omega_1 t} + \frac{\partial A_2}{\partial z} e^{j\Omega_2 t} \\ \frac{\partial^2 A}{\partial t^2} &= \left\{ \frac{\partial^2 A_1}{\partial t^2} + j2\Omega_1 \frac{\partial A_1}{\partial t} - \Omega_1^2 A_1 \right\} e^{j\Omega_1 t} + \left\{ \frac{\partial^2 A_2}{\partial t^2} + j2\Omega_2 \frac{\partial A_2}{\partial t} - \Omega_2^2 A_2 \right\} e^{j\Omega_2 t} \\ |A|^2 A &= \underbrace{\left\{ A_1 e^{j\Omega_1 t} + A_2 e^{j\Omega_2 t} \right\} \left\{ A_1^* e^{-j\Omega_1 t} + A_2^* e^{-j\Omega_2 t} \right\} \left\{ A_1 e^{j\Omega_1 t} + A_2 e^{j\Omega_2 t} + A_2 e^{j\Omega_2 t} \right\} \\ &= \left[|A_1|^2 + 2|A_2|^2 \right] A_1 e^{j\Omega_1 t} + \left[|A_2|^2 + 2|A_1|^2 \right] A_2 e^{j\Omega_2 t} + \underbrace{A_2^2 A_2^* e^{j(2\Omega_1 - \Omega_2) t} + A_2^2 A_3^* e^{j(2\Omega_1 - \Omega_2) t} + A_2^2 A_3^* e^{j(2\Omega_1 - \Omega_2) t} \right] \\ &= \frac{\partial A_1}{\partial z} e^{j\Omega_1 t} + \frac{\partial A_2}{\partial z} e^{j\Omega_2 t} = -\frac{\alpha}{2} \left\{ A_1 e^{j\Omega_1 t} + A_2 e^{j\Omega_2 t} \right\} + \\ &+ j \frac{\beta_2}{2} \left\{ \left(\frac{\partial^2 A_1}{\partial t^2} + j2\Omega_1 \frac{\partial A_1}{\partial t} - \Omega_1^2 A_1 \right) e^{j\Omega_1 t} + \left(\frac{\partial^2 A_2}{\partial t^2} + j2\Omega_2 \frac{\partial A_2}{\partial t} - \Omega_2^2 A_2 \right) e^{j\Omega_2 t} \right\} - \\ &- j\gamma \left\{ \left[|A_1|^2 + 2|A_2|^2 \right] A_1 e^{j\Omega_1 t} + \left[|A_2|^2 + 2|A_1|^2 \right] A_2 e^{j\Omega_2 t} \right\} \right\} \end{split}$$

 $\Omega_i + \Omega_j - \Omega_k = \Omega_m$

$$\frac{\partial A(z,t)}{\partial z} = -\frac{\alpha}{2}A(z,t) + j\frac{\beta_2}{2}\frac{\partial^2 A(z,t)}{\partial t^2} - j\gamma \left|A(z,t)\right|^2 A(z,t)$$

M-Channel Transmission $A(z,t) = \sum_{m=1}^{M} A_m(z,t) e^{j\Omega_m t}$ ω $\omega_0 \omega_1$ \mathcal{O}_M ω_{2} $\frac{\partial A_m}{\partial z} = -\left\{\frac{\alpha}{2} + j\frac{\beta_2}{2}\Omega_m^2\right\}A_m - \Omega_m\beta_2\frac{\partial A_m}{\partial t} + j\frac{\beta_2}{2}\frac{\partial^2 A_m}{\partial t^2} - \frac{\beta_2}{2}\frac{\partial^2 A_m}{\partial t^2}$ $-j\gamma\left\{\left[\left|A_{m}\right|^{2}\right]+\left(2\sum_{i\neq m}\left|A_{i}\right|^{2}\right]A_{m}+\left(\sum_{i}\sum_{j}\sum_{k}A_{i}A_{j}A_{k}^{*}\right)\right\}$

Self-Phase Cross-Phase Four-Wave Modulation (XPM) Modulation (XPM) Mixing (FWM)

12 MARCH 2021

2. OPTICAL FIBER - PULSE PROPAGATION: NONLINEAR EFFECTS

Effects of Group-Velocity MismatchXPM can occur only when pulses overlap in the time domain
$$\frac{\partial A_1}{\partial z} = -\left\{\frac{\alpha}{2} + j\frac{\beta_2}{2}\Omega_1^2\right\}A_1 - \Omega_1\beta_2\frac{\partial A_1}{\partial t} + j\frac{\beta_2}{2}\frac{\partial^2 A_1}{\partial t^2} - j\gamma\left[|A_1|^2 + 2|A_2|^2\right]A_1$$
 $\frac{\partial A_2}{\partial z} = -\left\{\frac{\alpha}{2} + j\frac{\beta_2}{2}\Omega_2^2\right\}A_2 - \Omega_2\beta_2\frac{\partial A_2}{\partial t} + j\frac{\beta_2}{2}\frac{\partial^2 A_2}{\partial t^2} - j\gamma\left[|A_2|^2 + 2|A_1|^2\right]A_2$ A_1 A_1 Pump $A_1 \gg A_2$ Negligible dispersion-induced pulse broadening A_2 CW Probe $\Omega_2 = 0$

$$\frac{\partial A_1}{\partial z} = -\left\{\frac{\alpha}{2} + j\frac{\beta_2}{2}\Omega_1^2\right\}A_1 - \delta\frac{\partial A_1}{\partial t} - j\gamma \left|A_1\right|^2 A_1$$
$$\frac{\partial A_2}{\partial z} = -\frac{\alpha}{2}A_2 - j\gamma 2\left|A_1\right|^2 A_2$$

Group-Velocity Mismatch $\delta \equiv \Omega_1 \beta_2$

cts $\mathbf{\Sigma}$ O Effe ropaga Π U ā 2. Se **U**O Pul Ž

Effects of Group-Velocity Mismatch

$$\begin{split} \frac{\partial A_{1}}{\partial z} &= -\left\{ \frac{\alpha}{2} + j \frac{\beta_{2}}{2} \Omega_{1}^{2} \right\} A_{1} - \delta \frac{\partial A_{1}}{\partial t} - j\gamma \left| A_{1} \right|^{2} A_{1} \\ A_{1} &= \sqrt{P_{1}} e^{j\phi_{1}} \rightarrow \frac{\partial A_{1}}{\partial z, t} = \left\{ \frac{1}{2\sqrt{P_{1}}} \frac{\partial P_{1}}{\partial z} + j \frac{\partial \phi_{1}}{\partial z, t} \sqrt{P_{1}} \right\} e^{j\phi_{1}} \\ &\left\{ \frac{1}{2\sqrt{P_{1}}} \frac{\partial P_{1}}{\partial z} + j \frac{\partial \phi_{1}}{\partial z} \sqrt{P_{1}} \right\} e^{j\phi_{1}} = \\ &= -\left\{ \frac{\alpha}{2} + j \frac{\beta_{2}}{2} \Omega_{1}^{2} \right\} \sqrt{P_{1}} e^{j\phi_{1}} - \delta \left\{ \frac{1}{2\sqrt{P_{1}}} \frac{\partial P_{1}}{\partial t} + j \frac{\partial \phi_{1}}{\partial t} \sqrt{P_{1}} \right\} e^{j\phi_{1}} \\ &- \frac{\Re(A_{1})}{2} = -\alpha P_{1} - \delta \frac{\partial P_{1}}{\partial t} \rightarrow P_{1}(z, t) = P_{1}(0, t - \delta z) e^{-\alpha z} \\ \frac{\partial A_{2}}{\partial z} &= -\frac{\alpha}{2} A_{2} - j\gamma 2 \frac{|A_{1}|^{2}}{P_{1}(z, t)} A_{2} \\ &A_{2}(L) &= A_{2}(0) e^{-\frac{\alpha L}{2}} e^{-j\phi_{MM}} \end{split}$$

XPM-induced phase shift

Effects of Group-Velocity Mismatch

Sinusoidally-modulated pump

$$P_{1}(0,t-\delta z) = P_{0} + P_{m}\cos(\omega_{m}t)$$

$$\phi_{XPM}(t) \equiv 2\gamma \int_{0}^{L} P_{1}(0,t-\delta z)e^{-\alpha z}\partial z =$$

$$= 2\gamma P_{0} \int_{0}^{L} e^{-\alpha z}\partial z + 2\gamma P_{m}L_{eff}\sqrt{\eta_{XPM}}\cos(\omega_{m}t+\psi)$$

1

I

XPM Efficiency

$$\eta_{XPM} = \frac{\alpha^2}{\alpha^2 + \delta^2 \omega_m^2} \left\{ 1 + \frac{4\sin^2\left(\omega_m \delta \frac{L}{2}\right)e^{-\alpha L}}{\left(1 - e^{-\alpha L}\right)^2} \right\}$$

XPM Phase Retardation

$$\psi \approx \frac{\delta \cdot \omega_m}{\alpha} \left(1 - \frac{L}{L_{eff}} e^{-\alpha L} \right)$$

cts 0 ropaga Eff Π U Ise 0 **D**L Ζ

Effects of Group-Velocity Dispersion

$$\frac{\partial A_1}{\partial z} = -\left\{\frac{\alpha}{2} + j\frac{\beta_2}{2}\Omega_1^2\right\}A_1 - \Omega_1\beta_2\frac{\partial A_1}{\partial t} + j\frac{\beta_2}{2}\frac{\partial^2 A_1}{\partial t^2} - j\gamma\left[\left|A_1\right|^2 + 2\left|A_2\right|^2\right]A_1$$
$$\frac{\partial A_2}{\partial z} = -\left\{\frac{\alpha}{2} + j\frac{\beta_2}{2}\Omega_2^2\right\}A_2 - \Omega_2\beta_2\frac{\partial A_2}{\partial t} + j\frac{\beta_2}{2}\frac{\partial^2 A_2}{\partial t^2} + j\gamma\left[\left|A_2\right|^2 + 2\left|A_1\right|^2\right]A_2$$

 A_1 Pump $A_1 \gg A_2$ A_2 CW Probe $\Omega_2 = 0$

Non negligible dispersioninduced pulse broadening on the probe

$$\frac{\partial A_{1}}{\partial z} = -\left\{ \frac{\alpha}{2} + j \frac{\beta_{2}}{2} \Omega_{1}^{2} \right\} A_{1} - \delta \frac{\partial A_{1}}{\partial t} - j\gamma \left| A_{1} \right|^{2} A_{1}$$
$$\frac{\partial A_{2}}{\partial z} = -\frac{\alpha}{2} A_{2} + j \frac{\beta_{2}}{2} \frac{\partial^{2} A_{2}}{\partial t^{2}} - j\gamma 2 \left| A_{1} \right|^{2} A_{2}$$
$$A_{1} = \sqrt{P_{1}} e^{j\phi_{1}}$$

Small Perturbation analysis

UNIVERSITAT POLITÈCNICA telecom **DE CATALUNYA** BARCELONATECH

ropaga Se Ζ

Figure 4.6: Power transfer function as a function of modulation frequency for (a) 114-km and (b) 230-km fiber links and two different channel spacings. In each case, solid curves show a theoretical fit to the experimental data. (After Ref. [46]; (c)1999 IEEE.)

Bitstream Pump

Figure 4.7: XPM-induced power fluctuations on a CW probe for 130-km (middle) and 320km (top) fiber links with dispersion management. The NRZ bit stream in the pump channel responsible for fluctuations is shown in the bottom trace. (After Ref. [46]; (c)1999 IEEE.)

> The combination of GVD and XPM can also lead to timing jitter in WDM systems.

10

FWM Efficiency

$$\frac{\partial A_m}{\partial z} = -\left\{\frac{\alpha}{2} + j\frac{\beta_2}{2}\Omega_m^2\right\}A_m - \Omega_m \beta_2 \frac{\partial A_m}{\partial t} + j\frac{\beta_2}{2}\frac{\partial^2 A_m}{\partial t^2} - A(z,t) = \sum_{m=1}^M A_m(z,t)e^{j\Omega_m t}$$
$$-j\gamma \left\{\left[|A_m|^2 + 2\sum_{i\neq m} |A_i|^2\right]A_m + \sum_i \sum_j \sum_k A_i A_j A_k^*\right\} \qquad \Omega_i + \Omega_j - \Omega_k = \Omega_m$$

Considerable physical insight can be gained by considering a single FWM term in the triple sum and focusing on the quasi-CW case so that time-derivative terms can be set to zero.

We neglect the phase shifts induced by SPM and XPM, and assume that the three channels participating in the FWM process remain nearly undepleted

FWM Efficiency

Figure 4.8: FWM efficiency plotted as a function of channel spacing for 25-km-long fibers with different dispersion characteristics. Fiber loss is assumed to be 0.2 dB/km in all cases.

2. OPTICAL FIBER – PULSE PROPAGATION: NONLINEAR EFFECTS

Effects ō ţ ropagat Π U onlin 0 Pulse Ž

Figure 4.9: Input (a) and output (c) optical spectra for eight equally spaced channels launched with 3-dBm powers. Input (b) and output (d) optical spectra in the case of unequal channel spacings when launched power per channel is 5 dBm. (After Ref. [59]; ©1995 IEEE.)

 $|A\rangle = \begin{pmatrix} A_x \\ A_y \end{pmatrix} \qquad \langle A| = \begin{pmatrix} A_x^* & A_y^* \end{pmatrix}$

 $\overline{\langle A | R_3 | A \rangle R_3} = \frac{1}{3} \langle A | A \rangle$

averaging

POLARIZATION EFFECTS

 $\frac{\partial |A\rangle}{\partial z} = -\frac{\alpha}{2} |A\rangle + \Delta\beta_1 R_1 \frac{\partial |A\rangle}{\partial t} + j \frac{\beta_2}{2} \frac{\partial^2 |A\rangle}{\partial t^2} - j\gamma \left(\underbrace{\langle A | A \rangle}_{|A_x|^2 + |A_y|^2} - \frac{1}{3} \langle A | R_3 | A \rangle R_3 \right) |A\rangle$

Birefringence in a typical optical fiber varies on a length scale of 10 to 100 m, while the dispersive and nonlinear effects vary on length scales ranging from 10 to 100 km.

Manakov Equation

*R*_{1,3}: Random Unitary Matrices

Split-Step Fourier Method

Symmetric

$$A(z+h) = 10^{-\frac{\alpha h}{2 \cdot 10^4}} \times F^{-1} \left\{ e^{-j\beta(\omega)h} \times F \left\{ e^{-j\gamma |A(z)|^2 h} A(z) \right\} \right\}$$

Asymmetric

$$A(z+h) = 10^{-\frac{\alpha h}{2 \cdot 10^4}} \times e^{-j\gamma |A(z)|^2 \frac{h}{2}} \times F^{-1} \left\{ e^{-j\beta(\omega)h} \times F \left\{ e^{-j\gamma |A(z)|^2 \frac{h}{2}} A(z) \right\} \right\}$$

Step size

$$\gamma |A(z)|^2 h < \gamma |A(z)|_{\max}^2 h < \Delta \phi_{\max} \to h < \frac{\Delta \phi_{\max}}{\gamma |A(z)|_{\max}^2} \neq \frac{\Delta \phi_{\max}}{\gamma |A(0)|_{\max}^2} 10^{\frac{\alpha z}{10^4}}$$

Propagation Constant

$$\beta(\omega) = \beta_0 + \beta_1 (\omega - \omega_0) + \frac{1}{2} \beta_2 (\omega - \omega_0)^2 + \frac{1}{6} \beta_3 (\omega - \omega_0)^3 + \cdots \qquad \beta_m = \frac{\partial^m \beta}{\partial \omega^m} \Big|_{\omega = \omega_0}$$